$AC$ and $BD$ intersect at E. So we use the power of point.
We have,
$BE.DE = CE.AE$
$\Rightarrow \frac{DE}{CE} = \frac{AE}{BE} $
$ \Rightarrow \frac{DG + GE}{CE}=\frac{AF + FE}{BE}$
$\Rightarrow \frac {CE + GE}{CE}=\frac{BE + FE}{BE}$
$\Rightarrow 1 + \frac{GE}{CE}= 1 + \frac{FE}{BE}$
$\Rightarrow \frac{GE}{CE}= \frac{FE}{BE}$
$\Rightarrow GE.BE = FE.CE$
So, by power of point we have that $BFGC$ has to be cyclic.