Let the gcd of $M$ and $N$ be $d$.
Let $M=dm$ and $N=dn$.
As $d$ is gcd, $gcd(m,n)=1$
So as given $lcm(M,N)=M^2-N^2+MN$
$lcm(M,N)=d^2m^2-d^2n^2+d^2mn=d^2(m^2-n^2+mn)$
We know, $gcd(a,b) \times lcm(a,b)=ab$
Using this,
$lcm(M,N) \times gcd(M,N)=MN$
$d^2(m^2-n^2+mn) \times d = dm \times dn$
$d^3(m^2-n^2+mn)=d^2mn$
$d(m^2-n^2+mn)=mn$
$dm^2-dn^2+dmn=mn$
$mn(d-1)=d(n^2-m^2)=d(n-m)(n+m)$
Note that $d$ is a divisor of Left hand side
As $gcd(d,d-1)=1$ and $d | mn(d-1)$ we have $d | mn$
As $gcd(m,n)=1$
So, $gcd(m,n-m)=1$
Also $gcd(m,n+m)=1$
So, $gcd(m,(n-m)(n+m))=1$
Similarly $gcd(n,(n-m)(n+m))=1$
So, $gcd(mn,(n-m)(n+m))=1$
which implies $mn | d$
We have $d | mn$ and $mn | d$ so $d=mn$
Now, $MN=dm \times dn =d^2mn=d^3$ which is a cubic number.