We divide the situations in 4 cases:
Note: We didn't include $a = d, b < c$ because it's not possible
Case 1: $a = b = c = d$
In this case $X = 0$, $Y=0$. So, $X+Y=0$
Case 2: $a+1 = d, b = c$
Since $\overline{dcba} > \overline{abcd}$ and $a < d$, hence $X's$ units digit will be $a+10 - d = a + 10 - (a+1) = 9$
Since $b = c$, hence $X's$ tens digit will be $b + 10 - (c+1) = b + 10 - (b + 1) = 9$.
Similarly, $X's$ tens digit will be $c+10 - (b+1) = c + 10 - (c + 1) = 9$.
And then the thousands digit will be $d - (a+1) = 0$
So, $X = 999$ and $Y=999$ and $X+Y=1998$.
Case 3: $a+1 < d, b = c$
This time $X's$ units digit will be $a + 10 - d$.
Like $\textbf{Case 2}$, $X's$ tens digit and hundreds digit will be $9$.
Then $X's$ thousands digit will be $d - (a+1)$.
So $X=1000 \times (d - (a+1)) + 990 + (a + 10 - d)$
and $Y=1000 \times (a + 10 - d) + 990 + (d - (a + 1))$.
Therefore, $X+Y = 10989.$
Case 4: $a < d, b < c$
$X's$ units digit will be $(a + 10 - d)$
$X's$ tens digit will be $(b + 10 - (c+1)) = (b + 9 - c)$.
$X's$ hundreds digit will be $(c - (b + 1)) = (c - b - 1)$.
$X's$ thousands digit will be $(d - a)$.
So, $X= 1000\times (d-a) + 100\times (c - b - 1) + 10 \times (b + 9 -c) + (a + 10 - d)$
and $Y = 1000\times (a + 10 - d) + 100\times (b + 9 - c) + 10 \times (c - b - 1) + (d-a)$.
Therefore, $X+Y=10890$