Let $E$ be the midpoint of $DC$.
From $BC=3BD$, we have $CE=ED=DB$.
But, $BD=OD$.
So, $ED=OD$.
If $M$ is the midpoint of $BC$, $CE=DB\implies M$ is the midpoint of $DE$.
But, $O$ is on the perpendicular bisector of $BC$ because it is the circumcenter of $ABC$. From this, $O$ is on the perpendicular bisector of $DE$.
So, $ED=OD=OE$
So, triangle $ODE$ is equilateral.
So, $\angle ADC=\angle ODE=60^\circ$,
Calculating $\angle OAC$,
$\angle OAC=\angle DAC=180^\circ-60^\circ-\angle ACD=120^\circ-\angle ACB.$
$\angle OAC=\frac{180^\circ-\angle COA}{2}=90^\circ-\angle CBA$
$120^\circ -\angle ACB=90^\circ - \angle CBA\implies \angle ACB=\angle CBA+30^\circ$
Calculating $\angle OBD$
$\angle OBD=\angle OBC=\frac{180^\circ - \angle COB}{2}=90^\circ -\angle CAB$
$\angle OBD = \angle DOB = 180^\circ-\angle AOB=180^\circ-2\angle ACB$
$90^\circ -\angle CAB=180^\circ-2\angle ACB\implies 2\angle ACB=90^\circ + \angle CAB$
Solving the set of equations:
$\angle ACB=\angle ABC+30^\circ$
$2\angle ACB= \angle CAB+90^\circ$
$\angle ABC+\angle BCA+\angle CAB=180^\circ$
We get the solution:
$\angle BAC=60^\circ$
$\angle ABC=45^\circ$
$\angle BCA=75^\circ$