Ecstatic Equations

Write the equation in this form : $(a-b)^2 = 3(ab-1)(ab+2a+2b+3)$


Now you can easily prove that except only finitely cases we have $3|ab+2a+2b+3| > |a-b|$ and $|ab-1| > |a-b| $


(For example $(ab-1)^2 \geq (a-b)^2 $ iff $(a^2 - 1)(b^2 -1) \geq 0$ )

Statistics
Success Rate
28.26 %

Submit
Login to Submit