$x^2-12y+4=0\implies x^2=12y-4$
$12y-4\equiv 2(\text{mod} 3)$
$ \implies x^2\equiv 2(\text{mod} 3)$
Case 1: $x\equiv 0(\text{mod} 3)\implies x^2\equiv 0(\text{mod} 3)$
Case 2: $x\equiv 1(\text{mod} 3)\implies x^2\equiv 1(\text{mod} 3)$
Case 3: $x\equiv 2(\text{mod} 3)\implies x^2\equiv 1(\text{mod} 3)$
But, we know that $x^2\equiv 2(\text{mod} 3)$
So, this is a contradiction.
$\therefore$ There are no solutions to the given equation.