$BF=BC \implies \angle BCF = \angle BFC$
$Also, $\angle BCF = 180 - \angle BFC - \angle FBC $
$\implies BCF = \frac{180-\angle FBC}{2} = \frac{\angle ABC}{2} = \angle EBC$
So, $BE\mid\mid CF$
In the same way, $BG\mid\mid CD$
\[BE\mid\mid CF \implies \frac{AB}{AF} =\frac{AE}{AC}\]
\[BG\mid\mid CD \implies \frac{AB}{AD} =\frac{AG}{AC}\]
Dividing the equations
\[\frac{AF}{AD} = \frac{AG}{AE}\]
So, $GF\mid\mid DE$