This can be done using Vieta's Theorem (Described Below)
Let the solution to $x^2+3x-1$ be $k,l$. Here,
$k+l=-3$ and $kl=-1$
Other than $k,l$ there are 2 more solutions to the equation $x^4+ax^2+bx+c$, say $m,n$.
Here,
$k+l+m+n=0 \implies m+n=-k-l=3$
$a=kl+mn+km+lm+kn+ln$
$\implies a=mn+kl+(m+n)(k+l)$
$\implies a=mn-1+3(-3)$
$\implies a=mn-10$
$-b=klm+kln+kmn+lmn$
$\implies b=kl(m+n)+mn(k+l)$
$\implies b=3(-1)-3mn$
$\implies b=3+3mn$
$4c=4klmn=-4mn$
So, $a+b+4c=mn-10+3mn+3-4mn=-7$
Vieta's Theorem:
Define a polynomial, $p$ as
\[p(x) = \sum_{i=0}^n c_ix^i\]
that has roots $a_1,~a_2,~a_3,~...,~a_n$. Vieta's theorem states that,
\[\sum_{i}a_i = -\frac{c_{n-1}}{c_n}\]
\[\sum_{i>j}a_ia_j = \frac{c_{n-2}}{c_n}\]
\[\sum_{i>j>k}a_ia_j = -\frac{c_{n-3}}{c_n}\]
\[\vdots\]
\[a_1a_2...a_n = (-1)^n\frac{c_0}{c_n}\]
Here, the sign alternates between positive and negative and the number of roots in each term keeps increasing. To be specific,
\[\sum_{m_1>m_2>...>m_k}a_{m_1}a_{m_2}...a_{m_k} = (-1)^k\frac{c_k}{c_n}\]