$\angle AA'B=\angle AA'D=90^\circ$. Hence $B,A',D$ are collinear.
Therefore, $A'$ is the foot altitude from $A$ to $BD$. Similarly, we get the properties of other points.
Now, $\angle BB'C=\angle BC'C$. Therefore, $B,B',C',C$ are concyclic.
So, $\angle PB'C'=\angle CB'C'=\angle CBC'=\angle CBP=\angle PBC$.
Similarly, $\angle PC'B'=\angle PCB$.
Therefore, $\triangle PBC\sim\triangle PB'C'$. Similarly, $\triangle PAD\sim\triangle PA'D'$.
Since, $AA'\perp BD, CC'\perp BD$, hence $AA'\parallel CC"$. So $\frac{PC'}{PA'}=\frac{PC}{PA}$.
Therefore, $ABCD\sim A'B'C'D'$.