The solution requires a understanding about quadratic reciprocity. There is a short scheme about it after the solution.
Claim: $a_{4k}=a_{4k+1}=(-1)^k\cdot2^{2k}$
Proof: We prove this inductively.
Base case is given.
Inductive step:
Given that $a_{4k}=a_{4k+1}=(-1)^k\cdot2^{2k}$ prove that $a_{4k+4}=a_{4k+5}=(-1)^{k+1}\cdot2^{2k+2}$.
Proof:
Now, $a_{2016}=a_{4\cdot 504}=(-1)^{504}\cdot2^{2\cdot504}=2^{1008}$
We want $2^{\frac{2017-1}{2}}\pmod{2017}$.
2017 is a prime number.
Using the special case of quadratic residue modulo $p$ for 2, we see that $2$ is a quadratic residue if and only if $p\equiv \pm 1\pmod 8$.
$2017 \equiv 1 \pmod{8} \implies$ 2 is a quadratic residue modulo $2017$.
Let $a^2 \equiv 2 \pmod{2017}$
$2^{\frac{2017-1}{2}} \equiv a^{2017-1} \equiv 1 \pmod {2017}$
So, the answer is 1.
Quadratic Reciprocity:
No proof is shown here, you can check the proofs in the book $Modern~olympiad~number~theory$.
Modulo $p$, an integer $a$ is called a quadratic residue if and only if there is an integer $x$ such that
\[x^2 \equiv a\pmod p\]
In the legendre symbol,
\[\left( \frac{a}{p} \right) = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue modulo } p \text{ and } a \not\equiv 0 \pmod{p}, \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p, \\ 0 & \text{if } a \equiv 0 \pmod{p}. \end{cases}\]
The quadratic reciprocity law states:
\[\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}\]
for odd primes $p, q$.
But, for the case of 2, it is:
\[\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}\]
for an odd prime $p$.