Assume that the center of $\alpha$ is $O$. We have
$\angle FBE = \angle PBE = 180^\circ - \angle EPB - \angle PEB$
$=180^\circ-\angle APB-\angle PEB = \angle AOB-\angle PEB $
$=2\angle AEB - \angle AEB = \angle AEB$
So, on circle $ABEF$, $\angle AEB = \angle FBE \implies AB=EF$.