Solution for $x$ is $x\in (-45,-\frac{2024}{45}]$.
Proof:
Let $[x] = \lfloor x\rfloor$ and $\{x\} = x - [x] \implies [x] = x-\{x\}$
$\implies 2025 > [x]^2+[x]\{x\} \geq 2024$
Case 1:
$[x]$ is positive.
$[x]$ is an integer and, $0\leq \{x\}<1 \implies 0\leq \{x\}[x]<[x]$
$[[x[x]] = 2024 \implies [[x]^2+\{x\}[x]] = 2024$
From the first part,
$2025 >[x]^2+[x]\{x\}\implies 2025 > [x]^2 \implies [x]<45$
From the second part,
$[x]^2+[x]\{x\} \geq 2024\implies [x]^2 + [x] \geq 2024 \implies [x]>44$
So, $45>[x]>44$, no integer solution for $[x]$
Case 2:
$[x]$ is negative.
$[x]$ is an integer and $0\leq \{x\}<1 \implies 0\geq \{x\}[x]>[x]$
$[x[x]] = 2024 \implies [[x]^2+\{x\}[x]] = 2024$
From the first part,
$2025 >[x]^2+[x]\{x\}\implies 2025 > [x]^2+[x] \implies [x]>-46$
From the second part,
$[x]^2+[x]\{x\} \geq 2024\implies [x]^2 \geq 2024 \implies [x]<-44$
So, $-44>[x]>-46$ and so $[x] = -45$.
So, \[[-45x]=2024 \implies 2025 > -45x \geq 2024 \implies -\frac{2024}{45} \geq x > -45\]
So, the only solutions for $x$ is: $x\in (-45,-\frac{2024}{45}]$