Let $S_a=\frac{AE}{AB} + \frac{FA}{CA}, S_b= \frac{EB}{AB} + \frac{BD}{BC}, S_c=\frac{DC}{BC} + \frac{CF}{CA}$.
Let $M_a=AE/AB \times FA/CA, M_b=EB/AB \times BD/BC, M_c=DC/BC \times CF/CA$.
Now,
$S_a + S_b + S_c $
$= \frac{AE}{AB} + \frac{FA}{CA} + \frac{EB}{AB} + \frac{BD}{BC} + \frac{DC}{BC} + \frac{CF}{CA} $
$= 3$.
Without loss of generality, we assume that $S_b$ is the lowest among $S_a,S_b,S_c$. By pigeon hole principle, we know that $S_b \leq 1$.
From AM-GM inequality, we know that $\frac{S_b}{2} \geq \sqrt{M_b}$ or $\frac{1}{4} \geq \frac{S_b}{4} \geq M_b$.
Now, the area of $\triangle BED$
$ = \frac{\sin{\angle EBD}}{2}\times BE \times BD $
$= \frac{\sin{\angle ABC}}{2}\times AB \times BC\times M_b $
$= 2016\times M_b \leq 2016 \times \frac{1}{4} $
$= 504$.