Triple Whirlwind

1.

We can just check all values of $n\pmod 6$:

$n$ $n(n+1)(n+2)$
00
16
224
360
4120
5210


Clearly, all the values of the second column are divisible by $6$. Thus $6\mid n(n+1)(n+2)$.


2. 

Note that \begin{align*} & 1^{2015} + 2^{2015} + 3^{2015} + 4^{2015} + 5^{2015} + 6^{2015} \\  \equiv \ & 1^{2015}+2^{2015}+3^{2015} + (-3)^{2015}+(-2)^{2015}+(-1)^{2015} \\  \equiv \ & 0\pmod 7\end{align*} Thus we are done.